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A confined incompressible elastic film does not deform uniformly when subjected to adhesive interfacial
stresses but with undulations which have a characteristic wavelength scaling linearly with the thickness of the
film. In the classical peel geometry, undulations appear along the contact line below a critical film thickness or
below a critical curvature of the plate. Perturbation analysis of the stress equilibrium equations shows that for
a critically confined film the total excess energy indeed attains a minimum for a finite amplitude of the
perturbations which grow with further increase in the confinement.
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I. INTRODUCTION

The spontaneous surface and interfacial instabilities of
thin liquid films have been studied in different contexts—
e.g., the classical Saffman-Taylor �1� problem in a Hele
Shaw cell in which flow-driven fingering patterns develop at
the moving interface of two viscous or viscoelastic liquids
�2,3�, disjoining pressure-induced rupturing and dewetting
�4,5� of ultrathin viscous films, spiral instabilities in visco-
metric flow of a viscoelastic liquid �6,7�, and fingering insta-
bility and cavitation during the peeling of a layer of vis-
coelastic adhesive �8,9�. While most of these viscous and
viscoelastic systems have been well characterized experi-
mentally and theoretically, similar surface undulations of
confined thin elastic films pose a different kind of problem
despite geometric commonalities with many of the liquid
systems, the essential difference being that unlike in the liq-
uid system there is no flow of mass and consequent perma-
nent deformation in the elastic body, where the extent of
deformation is governed by the equilibrium of the external
surface or body forces on the material and the elastic forces
developed.

The specific system that will be described in this paper is
a thin layer of elastic adhesive confined between a rigid and
a flexible plate. While the film remains strongly bonded to
the rigid substrate, the flexible plate is detached from it in the
classical peel geometry. A high aspect ratio of such systems
is noteworthy as the lateral length scale far exceeds the thick-
ness of the film, resulting in high degree of confinement for
the adhesive. As a result, adhesive stresses at the interface do
not always result in a uniform deformation throughout the
whole area of contact; rather, spatially varying deformations
�10–13� attain lower energy for the system. Experimentally
we see the existence of a critical thickness of the film or a
critical curvature of the flexible plate below which the con-
tact line between the film and flexible plate does not remain
straight, but turns undulatory with a characteristic wave-
length which increases linearly with the thickness of the film
�14�. While experimentally this phenomenon has been char-
acterized, there is not much understanding as to what drives
this instability in a nonflow purely elastic system and how
the curvature of the plate or the thickness of the film results
in a critical confinement of the film. Here I present a pertur-
bation analysis which addresses these questions, highlighting

the dual effects of the incompressibility of the elastic film
and its confinement.

II. PROBLEM FORMULATION

The schematic of our experiment is represented in Fig.
1�a� in which an elastic film of thickness h and shear modu-
lus � remains strongly bonded to a rigid substrate while a
flexible plate of rigidity D in contact with the film in the
form of a curved elastica is supported at one end using a
spacer of height �. The straight contact line between the film
and plate becomes wavy when the film thickness h decreases
below a critical value hc or the curvature of the plate de-
creases below a critical value 1/�c. Figure 1�b� represents a
typical video micrograph of such undulations which are char-
acterized by two different length scales: the separation dis-
tance � between the waves which scales as ��4 h and the
amplitude A which varies with D and � as A��D /��1/3 �14�.
The figure depicts also the coordinate system in which x, y,
and z axes represent, respectively, the direction of propaga-
tion of the contact line, the direction of the wave vector, and
the thickness coordinate of the film. The y axis is located
along the tips of the waves so that the film is completely out
of contact with the plate at 0�x�a. Assuming the adhesive
film to be incompressible and purely elastic with no viscous
effect, we write the following stress equilibrium relations in
the absence of any body force:

FIG. 1. �a� Schematic of the experiment in which a model elas-
tic adhesive remains bonded to a rigid substrate and a flexible plate
is detached from it with the help of a spacer inserted at the opening
of the crack. For a critically confined film, the contact line does not
remain smooth but becomes undulatory as shown in video micro-
graph �b�.
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px = ��uxx + uyy + uzz� ,

py = ��vxx + vyy + vzz� ,

pz = ��wxx + wyy + wzz� , �1�

where u, v, and w are the displacements in the x, y, and z
directions, respectively, and p is the pressure. Here and ev-
erywhere, sx=�s /�x and sxx=�2s /�x2. The incompressibility
of the film results in

ux + vy + wz = 0. �2�

These equations are solved using the following set of bound-
ary conditions �BC’s�: �a� Since the film remains strongly
bonded to the substrate, we use the no-slip boundary condi-
tion at the interface of the film and substrate �z=0�,

u�z = 0� = v�z = 0� = w�z = 0� = 0. �3�

�b� We assume frictionless contact at the interface of the film
and cover plate, z=h, which results in zero shear stress at the
interface,

�xz�x,y,h� = 0 = �yz�x,y,h� . �4�

�c� We assume continuity of normal stress across the inter-
face �z=h� which implies that the normal stress on the film is
equal to the bending stress on the plate,

�zz�z = h� = − D�2��z = h� at x � 0; �5�

here, ���2 /�x2+�2 /�y2 is the two-dimensional Laplacian,
D is the flexural rigidity of the plate, and ��=w�x,z=h is its
vertical displacement. Since the plate bends only in the di-
rection of the x coordinate, its vertical displacement � re-
mains uniform along the y axis; hence, we simplify BC �5� as

�zz�z = h� = − D�xxxx�z = h� at x � 0. �6�

At 0�x�a there is no traction either on the film or plate
which yields

��xz�z=h = ��yz�z=h = ��zz�z=h = 0. �7�

Equations �1� and �2� can be written in dimensionless form
using the following dimensionless quantities:

X = xq, Y = y/h, Z = z/h, U = uq, V = v/h ,

W = w/h, � = �/h, P = p	2/� .

While the thickness h of the film is the characteristic length
along the y and z axes, q−1 is that along x. The length q−1 can
be derived as the ratio of the deformability of the plate and
film �15,16�: q−1= �Dh3 /3��1/6. The quantity 	=hq defined
as the ratio of the two characteristic lengths is a measure of
the confinement of the film such that a lower value of 	
represents a more confined film. Equations �1� and �2� can
then be written in the following dimensionless form:

PX = 	2UXX + UYY + UZZ,

PY = 	4VXX + 	2�VYY + VZZ� ,

PZ = 	4WXX + 	2�WYY + WZZ� ,

0 = UX + VY + WZ, �8�

while the boundary conditions �3�–�7� result:

�a� U�Z = 0� = V�Z = 0� = W�Z = 0� = 0,

�b� �XZ�X,Y,Z = 1� = 0 = �YZ�X,Y,Z = 1� ,

�c� − P�Z = 1� + 2	2WZ�Z = 1� = − 3�XXXX at X � 0,

�d� 0 = �XXXX at 0 � X � aq ,

�9�

where aq is the dimensionless crack length. Equation �8� is
solved by the regular perturbation technique which assumes
that the solutions consist of two components: the base solu-
tions which remain uniform along the Y coordinate and the
correction term which incorporates the spatial variation
along the Y axis. Thus the base solutions are of order 	0 and
the perturbed solutions are of order 	2 ,	4 , . . ., so that any
variable T�X ,Y ,Z�=T0�X ,Z�+	2T1�X ,Y ,Z�+	4T2�X ,Y ,Z�
+¯ where T= P, U, V, and W. Inserting these definitions
into Eq. �8� and separating the base �Y independent� and
perturbed terms yields

P0X = �	2U0XX + U0ZZ�, P0Z = �	4W0XX + 	2W0ZZ� ,

0 = U0X + W0Z, �10�

which are solved using the BC’s

�a� �U0�Z=0 = �W0�Z=0 = 0,

�b� �U0Z�Z=1 + �	2W0X�Z=1 = 0,

�c� � − P0�Z=1 + �2	2W0Z�Z=1 = − 3�0XXXX at X � 0,

�d� 0 = �0XXXX at 0 � X � aq

�11�

and

	2P1X + 	4P2X

= 	2�U1YY + U1ZZ� + 	4�U1XX + U2YY + U2ZZ� + 	6U2XX,

	2P1Y + 	4P2Y = 	4�V1YY + V1ZZ� + 	6�V1XX + V2YY + V2ZZ� ,

	2P1Z + 	4P2Z = 	4�W1YY + W1ZZ� + 	6�W1XX + W2YY + W2ZZ� ,

0 = U1X + V1Y + W1Z, �12�

which are solved using

�a� �U1�Z=0 = �V1�Z=0 = �W1�Z=0 = �U2�Z=0 = 0,

�b� �	2U1Z�Z=1 + �	4�W1X + U2z��Z=1 = 0 = �	2�V1Z + W1Y��Z=1,

�c� �P1�Z=1 = 3�1XXXX at X � 0,

�d� 0 = �1XXXX at 0 � X � aq .

�13�

Base solution. Since for a thin film 	2
1, Eqs. �10� and
�11� can be simplified by neglecting the terms containing 	2.
Integration of the resulting equations �presented in detail in
Ref. �16�� finally leads to the following solution for the base
components of the displacements in the film and plate:

U0 = �3Z2/2 − 3Z�F��1�X�, W0 = �3Z2/2 − Z3/2�F��2�X� ,
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�1 = eX/2�aqeX/2 + �3aq + 4�sin��3X/2�/�3 − aq cos��3X/2�� ,

�2 = eX/2�aqeX/2 + �3aq + 2�sin��3X/2�/�3

+ �aq + 2�cos��3X/2�� ,

F� = 3�̄/�6 + 12aq + 9�aq�2 + 2�aq�3�, �̄ = �/h ,

�0 = F��2�X� �X � 0�

= F��2�aq + 1� + �3aq + 2�X + aqX2 − X3/3� �0 � X

� aq� , �14�

which suggest oscillatory variation along X with wavelength
�5, implying that the relevant length scale along x is �5q−1.
The displacement profiles in Eqs. �14� can be used to obtain
the following expression for the dimensionless work of ad-
hesion �16� G=WA / �� /q�:

G = g�aq��27�̄2/2	�aq�4� ,

g�aq� = 8�aq�4�12 + 46�aq� + 72�aq�2 + 56�aq�3 + 21�aq�4

+ 3�aq�5�/3�6 + 12�aq� + 9�aq�2 + 2�aq�3�3, �15�

in which g�aq� is the correction to the classical result of
Obreimoff �17� for peeling off a rigid substrate.

Perturbation analysis. Matching the coefficients for 	i, i
=2, 4, on the left- and right-hand sides of Eqs. �12� results in
the following set of equations:

	2: P1X = U1YY + U1ZZ, P1Y = 0, P1Z = 0,

	4: P2X = U1XX + U2YY + U2ZZ, P2Y = V1YY + V1ZZ,

P2Z = W1YY + W1ZZ,

U1X + V1Y + W1Z = 0. �16�

We assume also that the excess quantities vary sinusoidally

along the Y axis, so that Ti= T̄i sin�KY�; T=U, W, P; Vi

= V̄i cos�KY�, i=1,2; K=2� / �� /h� is the dimensionless
wave number of the perturbed waves. Equations �16� are
solved using the following boundary conditions derived from
Eqs. �13�:

�a� at Z = 0, Ū1 = V̄1 = W̄1 = Ū2 = 0,

�b� at Z = 1, Ū1Z = 0, �Ū2Z + W̄1X� = 0,

�V̄1Z + W̄1Y� = 0,

�c� at Z = 1, X � 0, P̄1 = 3�1XXXX, �17�

at 0 � X � aq 0 = �1XXXX,

where �1=W̄1�X ,Z=1� is the vertical displacement of the
flexible plate at Z=1. The assumption of a sinusoidal depen-

dence on Y is a simplification which is apparent from the
video micrographs of the contact line as in Fig. 1�b� which
show that the film and plate remain in contact whole through
the area of the finger, implying that the deformation of the
film is not perfectly sinusoidal, as it would mean a line con-
tact between the plate and film. However, here I assume a
sinusoidal variation to keep the calculations simple. Since
the plate does not bend in the direction of Y, �1 and �1XXXX
both remain uniform along this axis; consequently, in BC

�17��c�, the bending stress on the plate is equated to P̄1.
Equations �16� suggest that P1 remains independent of Y and
Z although U1 varies along Y; hence, the only solution for P1
that can satisfy Eqs. �16� is P1=0. Other components of the
excess displacements are obtained as

U1 = 0,

V1 =
C�X�

K
	
 − 2K�eK + e−K�

eK + e−K + 2KeK�sinh�KZ�

+ KZ
 eK + e−K − 2Ke−K

eK + e−K + 2KeK eKZ − e−KZ��cos�KY� ,

W1 =
C�X�

K
	−

2eK + 2e−K + 2K�eK − e−K�
eK + e−K + 2KeK sinh�KZ�

+ KZ
 eK + e−K − 2Ke−K

eK + e−K + 2KeK eKZ + e−KZ��sin�KY� .

�18�

Here, only the lowest-order terms in 	 are computed since
the higher-order terms enhance the accuracy insignificantly.
Since for all our experiments 	�0.3, the above solutions
imply that the excess deformations in the film occur under
very small excess pressure which is of the order of 	4

�0.01. This excess pressure, however small, varies along Y,
implying that it should depend upon the distance between the
plate and film. Nevertheless, the excess traction which re-
sults from the distance-dependent forces �18,19� applies only
in the immediate vicinity ��0.1 �m� of the contact between
the film and plate as the gap between the two increases rather
sharply �could be observed in atomic force microscopy
�AFM� images of the permanent patterns of surface undula-
tions�. Hence, it does not contribute any significantly to the
overall energetics.

While Eq. �18� elaborates the variation of excess defor-
mations along Y and Z, their dependence on X is incorpo-
rated through the coefficient C�X� which is obtained by solv-
ing Eqs. �17��c� using the following boundary conditions:

�i,ii� ��1�X=0 = C0�K�, �iii� ��1X�X=0− = ��1X�X=0+,

�iv� ��1XX�X=0− = ��1XX�X=0+,

�v,vi� ��1�X=−� = ��1X�X=−� = 0,

�vii,viii� ��1�X=aq = ��1XX�X=aq = 0,

where �=Aq is the dimensionless amplitude of the waves
and C0�K� is the excess stretching of the film at x=0: C0 is
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a constant and �K�= �W̄1 /C�X��X=0= �e−K−e3K+4KeK� /K�1
+e2K�1+2K��. �a� BC’s �i�, �ii�, �iii�, and �iv� occur because
the excess displacement and slope of the plate are continuous
at X=0; �b� at X=−�, the displacement of the plate, its slope,
should vanish, which results in the BC’s �v� and �vi�; �c�
similarly, at X=aq the excess displacement and curvature of
the plate is zero, which results in BC’s �vii� and �viii�. Incor-
porating these boundary conditions into the solutions of Eqs.
�17��c� yields the following expression for the excess dis-
placement of the plate:

�1 =
C0�K�

aq�3� + 4aq�
− �3�2 + 6aq� + 2�aq�2��X/��3

− 3�2�2 + 3aq���X/��2 − 3��2 − 2�aq�2��X/��

+ aq�3� + 4aq�� at X � 0,

�1 = C0�K�
1 +
aq

��3� + 4aq�
�2� + 3aq��X/aq�3

− 3�2� + 3aq��X/aq�2 − 3��2 − 2�aq�2��X/�aq�2���
at 0 � X � aq . �19�

Excess energy. The total energy of the system consists of
the elastic energy of the film, bending energy of the plate,
and interfacial energy:

� = �e + �b + �i =
�

4
�

−�

0 �
0

2�/k �
0

h

��vz + wy�2 + �uy + vx�2

+ �uz + wx�2�dzdydx +
D

2
�

−�

a �
0

2�/k

��xx�2dydx

+ WA�2�a/k + Afinger� , �20�

where Afinger is the interfacial area of contact at −a�x�0.
From Eq. �20� the excess energy of the system is obtained as
�excess=�−�0 which is written in a dimensionless form us-
ing � /q3 as the characteristic energy and by substituting for
variables T=T0+	2T1+	4T2, where T=U, V, W, and P.

The expression for excess elastic energy �e in the film is
obtained as

�e =
1

4
�

−�

0 �
0

2�/K �
0

1

	6�V1Z + W1Y + 	2�V2Z + W2Y��2

+ 	8�U2Y + V1X + 	2V2X�2 + 	8��U2Z + W1X� + 	2W2X�2

+ 2	4�U0Z + 	2W0X��U2Z + W1X + 	2W2X��dZdYdX ,

�21�

where the excess energy is estimated within a distance −�
�X�0. Considering only the leading-order terms �	4 and
	6� expression �21� simplifies to

�e =
	6

4
�

−�

0 �
0

2�/K �
0

1

�V1Z + W1Y�2dZdYdX . �22�

Substituting the expressions for V1 and W1 from Eqs. �18�
into Eq. �22� yields

�e = 	6C0
2f2��,aq,K�/4 = 	6C0

2f0�K� f̄2��,aq�/4. �23�

Similarly, the dimensionless excess bending energy �b of
the plate is obtained as

�b = �3�/K��
−xi

aq

�2	2�0XX�1XX + 	4��1XX + 	2�2XX�2�dX .

�24�

Considering only the leading-order terms 	2 and 	4, Eq. �24�
simplifies to

�b =
3�

K
�

−xi

aq

�2	2�0XX�1XX + 	4�1XX
2 �dX . �25�

Substituting the expressions for �0 and �1 from Eqs. �14�
and �19�, �b is obtained as

�b = 	2C0�̄f3��,aq,K� + 	4C0
2f1��,aq,K� . �26�

The interfacial energy is estimated as

�i = 2G	�
0

�/K �

2
sin�KY�dY =

2G�	

K
. �27�

Substituting the expression for G from Eqs. �15� into Eq.
�27� and combining all the three energies yields the total
excess energy as

� = �	6f2��,aq,K� + 	4f1��,aq,K��C0
2 + 	2f3��,aq,K��̄C0

+
27�̄2�

K

g�aq�
�aq�4 . �28�

The expressions for f1�� ,aq ,K�, f2�� ,aq ,K�, and f3�� ,aq ,K�
are obtained using Mathematica and are not being presented
here since they could not be written in a compact form.

III. RESULTS AND DISCUSSION

The expression for excess energy in Eq. �28� accounts for
the combined effects of three sets of parameters; 	, the con-
finement parameter; � and K, the characteristic length scale

of the perturbations; and aq and �̄, the length scale of the
geometry of the experiment. In what follows, we look for
solutions of these different sets of parameters which result in
negative excess energy associated with the instability.

While it is evident from Eq. �28� that � and K are nonlin-
early coupled quantities, the physics of the problem is better
understood if we study their effects separately. We do that
following the observation that the excess displacements in
the film but not that of the plate are functions of Y, which
allows us to assume that the dimensionless wave number K
of the perturbations is determined solely by the minima of
the excess elastic energy �e and not the other components of
the total excess energy. Although this assumption is not ex-
actly correct as the displacement � of the plate is also a
function of K, experimental observation that the amplitude
remains nearly independent of the wavelength �14� suggests
that the above assumption should not insert much inaccuracy
into the calculation.
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The plot of excess elastic energy �e vs the wave number
K in Fig. 2�a� then shows that �e attains a minimum when
K=1.91. The wavelength of perturbations thus scales with
the thickness of the film as �=3.3h which corroborates with
the general observation in a wide range of experimental ge-
ometries �12–14� that � remains independent of all the ma-
terial and geometric properties of the system except h. Fur-
thermore, the proportionality constant matches well with that
observed in experiments ��=3−4h� with rigid and flexible
contacting plates.

Although the minima of �e occurs at K=1.91 irrespective
of C0 and 	, for both these parameters real values are desired.
In fact, Eq. �28�, being quadratic with respect to C0, suggests
that in the limit �=0 the real solutions for C0 exist only
when

�	2f3��,aq,K��2 − 4�	6f2��,aq,K� + 	4f1��,aq,K��

��27�/K�g�aq�/�aq�4 � 0, �29�

resulting in the following inequality for 	2:

	2 �
f3

2��,aq,K�
4f2��,aq,K�

K

27�

�aq�4

g�aq�
−

f1��,aq,K�
f2��,aq,K�

. �30�

Equation �30� sets an upper bound for 	 as evident from Fig.
2�b� where � and 	 which satisfy Eq. �30� are plotted for K
=1.91 and for different aq. When 	 is smaller than this upper
critical limit 	u, two different solutions for � exist, the stabil-
ity of which depends upon whether � attains a minimum at
these solutions. Hypothesizing that � minimizes when
�� /�C0=0, we obtain an expression for C0 which, when
substituted in Eq. �28�, yields

� = −
�̄2

4

f3��,aq,K�2

f1��,aq,K� + 	2f2�K,��
+

27�̄2�

K
g�aq� . �31�

In Fig. 3�a� we plot � from Eq. �31� with respect to �, for
	=0.48–0.05. For all these cases, � exhibits a nonmono-
tonic character: with an increase in �, it first increases until it
reaches a maximum after which it decreases to attain a mini-
mum; thereafter, it increases again. The stability of these

FIG. 2. �a� Dimensionless elastic energy of the film is plotted
against the dimensionless wave number K of the surface undula-
tions. The energy of the film attains a minimum at K=1.91 implying
that the wavelength varies with thickness of the film as �=3.3h. �b�
Amplitude � is plotted against the limiting values of 	 from Eq. �30�
for different values of the dimensionless length aq. Curves 1–4
represent aq=5, 15, 25, and 55, respectively. 	u=0.48 is the upper
limit for 	 beyond which no real solution for C0 exists.

FIG. 3. �a� Dimensionless excess energy is plotted against the
dimensionless amplitude of the waves for different values of the
confinement parameter 	. The curves are obtained using represen-
tative values for the dimensionless parameters: aq=25, and K
=1.91. �b� Bifurcation diagram showing variation of � w.r.t. 	 for
different values of aq and K=1.91. The dotted and the solid lines
represent respectively �i vs 	 and �min vs 	. No solution for � exists
beyond 	c.
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systems is determined by the minimum of the excess energy
which if positive signifies stable base solution for the contact
line and unstable solution if negative. For example, for 	
=0.48, � remains positive all through, implying that the un-
dulation of a straight contact line would increase the total
energy of the system so that a straight contact line would
remain stable. On the other hand, 	=0.365 presents a limit-
ing case for which the minimum of the excess energy �min

attains zero and for 	=0.25, 0.15, 0.1, and 0.05, �min be-
comes negative; i.e., when the film is more than critically
confined—i.e., 	�	c=0.365—the contact line can become
unstable if sufficiently perturbed. The critical value 	c

=0.365 thus obtained for the above set of data corroborates
well with 0.3 obtained in the experiments of Fig. 1. Further-
more, a finite energy barrier at ���i suggests that a straight
contact line is not unstable for perturbations of all magni-
tude, because for a perturbation with amplitude ���i the
excess energy remains positive so that these perturbations
decay to zero. This result too corroborates with experiment
that with an increase in confinement of the film, the ampli-
tude of the undulations never increases from exactly zero,
but from a finite value. When ���i, � decreases to become
negative, so that these perturbations can grow until � reaches
�min, at which � attains the minimum �min; �min is then the
predicted amplitude of the undulations of the contact line.

Figure 3�b� depicts the bifurcation diagram where �i
�dashed line� and �min �solid line� are plotted with respect to
	 for variety of aq. The dashed lines signify that the pertur-
bations whose amplitude ���i decays to zero, whereas solid
lines mean those with ���i grow to �min. The amplitude �min
increases with increase in the confinement of the film similar
to that observed in experiments, although the values pre-
dicted are somewhat �2–3 times� larger than what is ob-
served. This discrepancy could be due to the underestimation
of the excess elastic energy of the film. In Fig. 4 the com-
bined effects of � and K are probed by plotting � with re-
spect to � and K. Here again �min becomes negative for a
confinement parameter 	 below a critical value 	c=0.365.
However, the wave number K at which the minimum occurs
does not remain constant; it decreases from 2.12 to 0.5 while
	 varies from 0.365 to 0.05. Although this prediction is
somewhat different from experiments, in which 	 varies be-
tween 0.3 and 0.1, at which K is observed to be 1.57±0.1,
some recent observations �20� with very thin elastic films
��0.5 �m� indeed indicate that K can decrease to 1.0 as 	
decreases to 0.07. More experiments are clearly necessary to
characterize quantitatively the effect of the coupling of the
two length scales with highly confined elastic films.

IV. SUMMARY

The analysis shows that confinement of an incompressible
elastic film leads to favorable energetics for perturbations to
grow so that the film cannot deform uniformly everywhere
when subjected to tensile stresses at the interface. Further-
more, the nature of the adhesion stress is not important; even
the spatial variation of the surface forces plays rather an
insignificant role. While the theory captures the essential
physics of the problem, a slight overestimation of the ampli-
tude possibly results from the assumption of sinusoidal
variations along the Y axis which is not perfectly correct.
These issues can possibly be resolved by a three-dimensional
simulation of the force field near the contact line. Further-
more, it is appropriate to mention at this point that while the
adhesive used in these studies was purely elastic, similar
patterns should appear also with critically confined vis-
coelastic adhesive films. Our preliminary experiments �21�
suggest that for such a situation, the instability patterns bear
the signature of both the elastic instability �12,14� and vis-
cous instability—i.e., Saffman-Taylor instability �1�. The
theoretical analysis of such a system should then incorporate
the dual effects of both the viscous and elastic character of
the adhesive. Systematic experiments of such a system are a
subject of future research.
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